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Abstract. The theory of light scattering for a system of linear molecules with anisotropic polarizabilities
is considered. As a starting point for our theory, we express the result of a scattering experiment in VV
and VH symmetry as dynamic correlation functions of tensorial densities ρlm(q) with l = 0 and l = 2.
l, m denote indices of spherical harmonics. To account for all observed hydrodynamic singularities, a
generalization of the theory of Schilling and Scheidsteger [1] for these correlation functions is presented,
which is capable to describe the light scattering experiments from the liquid regime to the glassy state. As
a microscopic theory it fulfills all sum rules contrary to previous phenomenological theories. We emphasize
the importance of the helicity index m for the microscopic theory by showing, that only the existence
of m = 1 components lead to the well known Rytov dip in liquids and to the appearance of transversal
sound waves in VH symmetry in the deeply supercooled liquid and the glass. Exact expressions for the
phenomenological frequency dependent rotation translation coupling coefficients of previous theories are
derived.

PACS. 64.70.Pf Glass transitions – 78.35.+c Brillouin and Rayleigh scattering; other light scattering –
64.70.Dv Solid-liquid transitions – 61.25.Em Molecular liquids

1 Introduction

In 1957 Rytov [2] predicted, based on a macroscopic phe-
nomenological theory, that the depolarized light scattering
should show a dip at zero frequency. Later in the 60’s it
was indeed found experimentally [3] that the light scat-
tering of a liquid in VH geometry, where the plane of po-
larization of the incident light and the scattered light are
perpendicular to each other, shows a symmetric doublet
at ± 1 GHz, with a minimum at zero frequency. However
Rytov’s theory only showed to be in superficial agreement
with the experiments.

In the following time a number of theoretical attempts
have been made to understand the spectra. In general the
intensity of the scattered light ISI is proportional to the
correlation function of the fluctuations in the components
αSI(q, t) of the total polarizability tensor and to the in-
cident light II. Scattering in VH geometry is of particu-
lar interest since the direct (VV or HH) contributions are
dominated by Brillouin peaks which correspond to propa-
gating sound waves. In an ideal depolarized spectrum the
Brillouin lines will be absent and therefore further infor-
mation of the low frequency dynamics of the system can
be obtained.

It is most commonly believed that in molecular liquids,
where anisotropic single molecule polarizability fluctua-
tions are the main cause of depolarized spectra, the dip is
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caused by the coupling of molecular orientations to some
part of the stress tensor. These theories can all be under-
stood in the framework of the Mori-Zwanzig projection
technique by using different variables for the projection
scheme. Some primary variable is picked which couples
via a memory kernel to other secondary variables. Until
the end of the 70th however the generalized viscosities
which occur in the memory kernel where assumed to be
time independent.

In 1969 Volterra [4] used the orientations as a primary
variable to which the stress tensor couples which he be-
lieved to have – due to symmetry reasons – a nonzero ma-
trix element with the total polarizability. Anderson and
Pecora proposed in 1971 [5] a theory which used only the
symmetric part of the stress tensor as a secondary vari-
able. Keyes and Kivelson in 1972 [6] used the total polar-
izability as a primary variable and the momentum density
as a secondary. Ailawadi et al. [7] in 1972 coupled the spin
angular momentum density to the asymmetric part of the
stress tensor.

At that time it became evident that when reaching to-
wards the supercooled regime additional features occurred
e.g. additional site peaks or a central peak which could not
be explained consistently by any of the above two vari-
able theories. Therefore a number of theories were devel-
oped with additional variables (and an additional number
of adjustable parameters). Quentrec in 1976 [8] used the
whole second rank tensor of the orientations and Chappell
et al. in 1981 [9] coupled the momentum density and an
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unspecified symmetric tensor to the total polarizability.
And also a four variable theory with 7 adjustable param-
eters was proposed [10]. Wang in 1980 [11] was the first
to introduce time dependent generalized viscosities which
can account for retardation effects in the memory func-
tions. An approach which got refined and improved later
on [12,13]. The authors of [12] and [13] emphasize the im-
portance of retardation – (memory) – effects in the cou-
pling coefficients between the rotational and translational
degrees of freedom. Since all the mentioned theories are
phenomenological, it is difficult to decide, which one will
give the “correct” description of the spectra. As an impor-
tant result of our theory, which we are going to present,
we will show, how the most complex of the mentioned
phenomenological theories [13] can be derived microscopi-
cally as a special approximation to a more complete set of
equations. Thereby microscopic expressions for the phe-
nomenological coupling constants in [13] are presented.

All of the above theories have in common, that they
deal with the theory of the experimental technique (light
scattering) and the dynamic of the system, which is mea-
sured in light scattering, on equal footing. One impor-
tant deficiency of the early theories, is a too simplistic
treatment for the dynamic of the liquid (e.g. assuming
white noise spectra for the in general frequency dependent
generalized viscosities [5]), although the phenomenology
for the light scattering part is correct. From a concep-
tual point of view, a clear distinction between these two
topics should be made. The question which quantity is
measured, can and should be answered first. In a second,
and we would like to stress, independent step, a theory
for the measured quantity can be formulated. This strat-
egy was already pursued in the generalized hydrodynamic
approach of [14], where – without specifying the scatter-
ing mechanism – a completely general treatment of the
effect of hydrodynamic singularities and the influence of
slow structural relaxations on light scattering spectra was
achieved, by deriving formally exact expressions for fre-
quency dependent Pockels constants and related Green
Kubo relations.

Also in our approach the two mentioned questions are
clearly separated. But contrary to [14], we will formulate
a theory for a specific scattering mechanism, to get some
more insight in the microscopic mechanisms. We will show
in Section 5, that the formal structure of the theory is
compatible with [14]. First we will derive the quantities,
which are measured in an ideal light scattering experi-
ments at linear molecules, where all interaction induced
effects can be neglected. Then, we present a set of micro-
scopic equations, which in principal enable us to calculate
these quantities for a supercooled liquid close to the glass
transition. In a final step we approximate our equations
very drastically, keeping only the necessary ingredients for
a qualitatively correct description of the light scattering
experiments. This step is only for pedagogical reasons, to
demonstrate the ability of the theory to reproduce light
scattering spectra close to the glass transition.

This paper is organized as follows: In Section 2 we
derive the direct contribution to the light scattering spec-

trum of a liquid of linear molecules. It will provide the
starting point for the following theoretical considerations.

In Section 3 we present a straight forward generaliza-
tion of the molecular mode coupling theory [1] for lin-
ear molecules, which in addition to the orientational and
translational degrees of freedom also describes the cou-
pling to transversal current fluctuations. In Section 4 we
formulate a restricted not self consistent theory, which
still contains all hydrodynamic modes and the most im-
portant rotational degrees of freedom. As a further, very
drastic approximation, we set up a simple Maxwell theory
to demonstrate that all qualitative features, observed in
light scattering experiments in supercooled liquids are re-
produced already within the restricted theory, by chang-
ing only the time scale of the structural relaxation. In
Section 5 the relation to other light scattering theories is
discussed. The phenomenological equations of [13] are de-
rived within our theory and shown to be a special case of
the restricted theory.

2 Light scattering from molecular systems

Following [15] the total polarizability of a molecular liquid
can be expressed as a sum of single particle and interaction
induced many particle contributions.

α(r − r′)Eext(r′) =
∑
i

αiδ(r − ri) δ(r′ − ri)Eint(r′)

+
∑
ij

αijδ(r − ri) δ(r′ − rj)Eint(r′)

+
∑
ijk

αijk ... (1)

where the superscript ext denotes the external electric
field and int denotes an effective internal field. In this work
we are concentrating on the direct contribution for linear
molecules only. In a dense liquid other scattering mecha-
nisms like direct and indirect dipole induced dipole scat-
tering mechanism and collision induced scattering mech-
anisms are also present, in general. For CS2 e.g. it has
been argued by Madden and Tildesley [16] that the in-
teraction induced mechanism is the dominant one (al-
though this result has been questioned [17]). For Salol it
was found [18,19], that the depolarized light scattering is
dominated by scattering at orientational fluctuations. In
[18,19] more examples are discussed. A theory for depolar-
ized DID spectra in simple liquids was presented in [20].
A generalization of this work to a hydrodynamic theory of
of light scattering, which incorporates in principle all pos-
sible scattering mechanisms was developed in [14]. Here
we want to concentrate on the molecular origin of the de-
polarized light scattering for a system of linear molecules.
A generalization to non linear molecules is straight for-
ward, but to avoid unnecessary complexity, we want to
restrict ourselves to linear molecules. The numerical study
of water [21,32] has shown, that even the dynamics of this
non linear molecule can be reasonably well reproduced by
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modeling it as as a linear molecule. Only direct contribu-
tion of the orientations to the spectra are discussed. All
interaction induced contributions are neglected.

For linear molecules the polarization tensor of a single
molecule can be written in the form

α(i) = aI +
g

3
(3n̂(i)n̂(i) − I). (2)

Here n̂(i) is a unit vector in the direction of the princi-
pal axis of the molecule i. I is the identity matrix. The
numbers a and g are the mean polarizability and the
anisotropy of the polarization respectively.

The collective wave-vector dependent fluctuations of
the total polarizability tensor α(q, t) are defined by

δαSI(q, t) =
N∑
i=1

δα
(i)
SI (t) exp(iqri(t)). (3)

Here the indices S, I denote the direction of the scattered
and incident light, respectively. The fluctuation of the sin-
gle molecule polarizability δα

(i)
SI (t) is completely due to

rotations of the molecule.
The light scattering intensity is then given by

ISI(q, ω) ∼ FT (〈α∗SI(q, t)αSI(q, 0)〉)

=
∫ ∞
−∞

dteiωt

× 〈
∑
i,j

α
(i)
SI

∗
(t)e−iqri(t)α

(j)
SI (0)eiqrj(0)〉 (4)

where the 〈〉 brackets denote a thermal expectation value.
Usually the convention is used that the xz-plane is the
scattering plane and the scattering vector is anti-parallel
to the z-axis (see Fig. 1). In this geometry the depolarized
scattering in VV and VH geometry, respectively, read:

IVV(q, ω) = IIFT (〈δαyy(q, t)∗δαyy(q, 0)〉)(ω) (5)

IVH(q, ω) = IIFT
(
〈δα∗yx(q, t)δαyx(q, 0)〉 sin2(Θ/2)

+ 〈δα∗yz(q, t)δαyz(q, 0)〉 cos2(Θ/2)
)
(ω) (6)

where Θ is the scattering angle, q = |q| and FT denotes
the Fourier transform. For linear molecules, the specified
scattering frame is equivalent to the so called q-frame,
where the z-axis is parallel to the scattering vector q, since
the polarizability tensor is a spherical tensor of rank two,
where only l = 0 and l = 2 components appear (see Ap-
pendix C). These are invariant under reflection q → −q.
The explicit form of α in the q-frame is derived in Ap-
pendix C. With (C.6) we arrive at the result

IVV(q, ω) ∼ a2S′′
0
00(q, ω) + g2 4π

15

(
S′′

2
22(q, ω)

+
1
3
S′′

0
22(q, ω)

)
− ag 4

3

√
π

5
S′′

0
20(q, ω) (7)

IVH(q, ω) ∼ g2 4π
15

(sin2(Θ/2)S′′222(q, ω)

+ cos2(Θ/2)S′′122(q, ω)). (8)

Laser

Detector

Probe

z

x

x’

θ/2θ

VV

VH

y,y’

z’

q

polarization
  filter

Fig. 1. The possible scattering geometries for a light-scattering
experiment. The coordinate system which is denoted with
(x, y, z) is the common coordinate system used in light scat-
tering theories. The coordinate system which is denoted with
(x′, y′, z′) is the q-frame usually used in theoretical descrip-
tions for the dynamics of liquids where the z-axis points along
the q-vector (arrow) which is probed.

In the derivation of equations (7) and (8) we used that
in the q-frame, the dynamic structure factors Smm

′

ll′ (q, t)
are diagonal with respect to m,m′ and that for lin-
ear molecules Smll′(q, t) = S−mll′ (q, t). The contribution
∼ S′′020(q, ω) will be neglected in the following. It is of
relative order q compared to S′′022(q, ω) and S′′000(q, ω) in
light scattering experiments at liquids for ω = cq and will
only contribute to the intensity of the Brillouin line in
glasses.

Similar equations were already derived in [22] for the
special case of a diluted gas, where translational and ro-
tational motion can be factorized. In the case of dense liq-
uids, the form equations (7) and (8) have to be used. For a
system of linear molecules with only direct but anisotropic
scattering mechanism, they provide a complete and exact
description of the observed light scattering spectra. Since
we are interested in light scattering experiments in super-
cooled liquids, we are going to present a microscopic the-
ory for the generalized dynamic structure factors Smll′(q, t)
which contains all observed features of light scattering ex-
periments close to the glass transition. Already from the
general form of (7) and (8) some general conclusions can
be drawn.

First, due to the scattering angle Θ in the VH geom-
etry a backscattering geometry only observes the m = 2
component of the dynamic density correlation function
whereas a 90 degrees scattering angle probes a mixture
of m = 1 and m = 2 components. In the following sec-
tions we show that the S0

22(q, ω) and S1
22(q, ω) component

couple to the longitudinal and transverse sound mode, re-
spectively, while the S2

22(q, ω) component does not cou-
ple to any hydrodynamic mode. Therefore it is possible
to replace S2

22(q, ω) by its value at q = 0, but not the
correlators with m = 0, 1. The different behavior of the
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correlators with different m is due to a dynamic break-
ing of the rotational invariance on the spatial scale of the
light scattering experiments, caused by the existence of hy-
drodynamic singularities. The phenomenological form for
the light scattering spectra used in the literature can be
recovered by rewriting equations (7) and (8) in the form

IVV(q, ω) ∼ a2S′′
0
00(q, ω) + g2 4π

15

[
4
3
S′′

0
22(q = 0, ω)

+
1
3

(
S′′

0
22(q, ω)− S′′022(q = 0, ω)

)]
(9)

IVH(q, ω) ∼ g2 4π
15

[
S′′

0
22(q = 0, ω) + cos2(Θ/2)

× (S′′122(q, ω)− S′′022(q = 0, ω))
]
. (10)

Here we have used that for q = 0 due to rotational sym-
metry all correlation functions with different helicity m
but the same l are equal and are therefore replaced with
m = 0. In addition we have neglected the off diagonal con-
tribution S0

20(q, ω). The last two terms in equations (9)
and (10) contain hydrodynamic poles and thus are essen-
tial for the understanding of light scattering experiments.
For theoretical considerations it is more convenient to use
equations (7) and (8). Therefore we continue in this work
using the representation in spherical harmonics.

Second, the spectra fulfill sum rules. The total inten-
sities ISI

tot =
∫

dωISI
tot(ω) for q → 0 are derived from equa-

tions (7) and (8)

IVV
tot (q = 0, t = 0) ∼ a2S′′

0
00(q = 0, t = 0)

+ g2 4π
15

4
3
S′′

0
22(q = 0, t = 0) (11)

IVH
tot (q = 0, t = 0) ∼ g2 4π

15
S′′

0
22(q = 0, t = 0). (12)

Here we used, that the static structure factor S′′mll′(q =
0, t = 0) are independent of m and diagonal in l, l’. There-
fore the anisotropic part of IVV

tot is exactly equal to 4
3I

VH
tot .

Third, we note the well established fact, that the often
used procedure to obtain the isotropic scattering contri-
bution (e.g. in [23], see also [22]) by simply subtracting
4
3I

VH from IVV(ω) is in general not exact, since there are
big qualitative differences between the correlation func-
tions Sm22(q, ω) for different m, due to the coupling of
translational and rotational motion. In Appendix 7B of
[22] the mentioned relation between IVV(ω) and IVH(ω)
could be derived by explicitly assuming, that rotational
and translational motion are independent. But it is clear,
that this cannot hold in dense liquids, where the rota-
tion of a molecule can easily cause the build up of local
stress via interaction with its neighbors. This stress can
then be released by a center of mass motion of neighboring
molecules. Instead of obtaining only the isotropic contri-
bution the mentioned subtraction method will yield the
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Fig. 2. The depolarization ratio for backscattering geometry

D(q, ω) =
�

(S′′
2
22(q, ω) + 1/3S′′

0
22(q, ω)

�
/S′′

2
22(q, ω) for some

arbitrary chosen parameters. In units of the rotational fre-
quency ωR ≡ 1, the other parameters where chosen as c‖ = 0.6,
GS = 1, νR = 5, Kl = 1, KR = 1, KlR = KSR = 1/2.
The values of the α-relaxation time τ were set identical for
all components with τ = τl = τR = τSR = τlR = τS ∈
{1, 0.01, 0.001, 10−5}.

following expression

IVV(q, ω)− 4
3
IVH(q, ω) ∼ a2S′′

0
00(q, ω) + g2 4π

45

×
[
S′′

0
22(q, ω)− S′′022(q = 0, ω)− 4 cos2(Θ/2)

×
(
S′′

1
22(q, ω)− S′′022(q = 0, ω)

)]
. (13)

Equation (13) shows, that even in back scattering geom-
etry deviations from the purely isotropic scattering are
to be expected. To demonstrate this point in more de-
tail, we plot in Figure 2 the value of the depolarization
ratio in backscattering geometry (Θ = π) for a simple
model which we derive from our equations (see Sect. 4).
To further demonstrate the result of equation (13) we have
(using the same model discussed in Sect. 4) further plot-
ted the quantity S′′022(q, ω) − S′′022(q = 0, ω))/S′′000(q, ω).
This is done on a linear scale in Figure 14 and on a log-
arithmic frequency scale in Figure 15. It can be clearly
seen that deep in the liquid phase (τ = 1) it is practically
zero whereas strong deviations occur especially around the
Brillouin lines when supercooling the liquid. From equa-
tions (9) and (10) it follows that the depolarization ratio
in general is given by

S′′222(q, ω) + 1
3S
′′0

22(q, ω)
sin2(Θ/2)S′′222(q, ω) + cos2(Θ/2)S′′122(q, ω)

=
4
3

+
1
3

× S′′022(q, ω)− S′′022(q=0, ω)
S′′022(q = 0, ω)+cos2(Θ/2)(S′′122(q, ω)−S′′022(q=0, ω))

·

(14)

In backscattering geometry (Θ = π) it is nearly constant
in the liquid and given by 4/3 whereas strong deviations
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Fig. 3. The depolarization ratio for the same parameters as
in Figure 2 on a logarithmic frequency scale.

occur around the Brillouin line when supercooling the liq-
uid. These deviations are expected to be even bigger when
the experiment is performed not in backscattering geome-
try since in this case the m = 1 component which couples
to the transverse phonon will also contribute. Figure 3
shows the depolarization ratio on a logarithmic frequency
scale. The deviations of the depolarization ratio from 4/3
are also seen in the experiment and are discussed in [18].
Therefore we have proven that the quantity IVV−4/3IVH

is not proportional to S0
00
′′(q, ω), especially not around the

Brillouin lines. We are aware that this is a severe difficulty
in interpreting light–scattering experiments and want
to point out that in the low frequency regime it is usu-
ally not applied anyway, since IVH becomes very weak.

3 The equation of motion of linear molecules

After having an exact expression for the scattered inten-
sities (see Eqs. (7) and (8)), we turn in this section to
the second and independent step in order to arrive at
a microscopic understanding of light scattering spectra.
This second step is the discussion of a microscopic the-
ory of a molecular liquid. The mode coupling theory of
the glass transition has by now proven to be a very suc-
cessful microscopic theory to describe the dynamics of su-
percooled liquids close to the glass transition (for a re-
cent review see e.g. [24,25]). In its early version [26] only
simple liquids consisting of spherical molecules were de-
scribed microscopically. Due to its successful application
also to experiments and simulations at arbitrary molecules
it became necessary to develop generalizations to molecu-
lar liquids [1,21,27–29]. Also aspects of these generalized
theories were successfully tested in simulations [30–32].
The main quantity, which is studied in [1] is the coher-
ent dynamic structure factor Smll′(q, t) for linear molecules.
The theory describes on a microscopic basis the coupling
of translational and orientational degrees of freedom, but
does not take into account the coupling to transversal cur-
rents. In [21] the theory for the dynamic structure fac-
tor Smm

′

ll′;nn′(q, t) of arbitrary rigid molecules was derived.

This theory deals also with the transversal currents, but
is at present difficult to reduce to linear molecules. Since
all theories of light scattering agree in the importance of
transversal current fluctuations, it will be necessary to for-
mulate a theory for linear molecules, which also contains
coupling to transversal currents. Fortunately this theory
is a straight forward generalization of the theory in [1].
We do not take into account energy fluctuations in our
derivation, which were necessary to describe the Rayleigh
peak i.e. the influence of heat diffusion on the light scat-
tering spectrum. We do not expect important changes for
the discussion of the light scattering spectrum, by neglect-
ing the influence of heat fluctuations. For a discussion of
the interplay of structural relaxation and heat diffusion
see [33,14].

The MMCT is derived within a Mori-Zwanzig projec-
tion operator formalism for tensorial densities ρlm(q, t)

ρlm(q, t) =
√

4πil
N∑
i=1

Ylm(Ωi(t)) eiqri(t) (15)

with Ylm(Ω) being the spherical harmonics and tensorial
currents {jα}lm(q, t). The index α = T,R denote trans-
lational currents and rotational currents, respectively. For
linear molecules it is not necessary to use the orientational
current as a vectorial quantity. The only quantity which
will appear in the theory is

{jR
0 }lm(q, t) =

√
4π√

l(l + 1)
il

N∑
i=1

(ωL)Ylm(Ωi(t)) eiqri(t).

(16)

Here L is the angular momentum operator and ω is the
angular velocity. {jR

0 }lm(q, t) with m ∈ {−l,−l+1, . . . l−
1, l} are the components of an irreducible spherical tensor
of rank l.

To be able to describe light scattering spectra we will
need all components of the translational current fluctua-
tions {jT

µ }lm(q, t), µ ∈ {−1, 0, 1}, not only its projection
along q as in [1]. Here we used spherical components µ
instead of Cartesian components {x, y, z}

{jT
µ }lm(q, t) = il

√
4π

N∑
i=1

vµYlm(Ωi(t)) eiqri(t) (17)

with

{jT
±1}lm(q, t) =

−1√
2

(±{jT
x }lm(q, t) + i{jT

y }lm(q, t))

{jT
0 }lm(q, t) = {jT

z }lm(q, t). (18)

The translational currents {jT
µ }lm(q, t) can be written as

a sum of components of an irreducible spherical tensor
{jT}irr

l̂m̂
(q, t)

{jT
µ }lm(q, t) =

∑
l̂,m̂

C(1ll̂;µmm̂){jT }irr
l̂m̂

(q, t) (19)
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with |l−1| ≤ l̂ ≤ l+ 1 and m̂ = m+µ, due to the proper-
ties of the Clebsch-Gordan coefficients C(l1l2l;m1m2m).
As an important special case we note, that the transver-
sal center of mass currents (jT

±1)00(q, t) have irreducible
spherical components {jT}irr1±1(q, t).

The currents and the densities fulfill a continuity
equation

d
dt
ρlm(q, t) =

∑
µ,α

i(−1)µqα−µ(l){jαµ}lm(q, t) (20)

with

qαµ(l) =


qµ for α = T√
l(l+ 1) for α = R

· (21)

With the help of Mori-Zwanzig projection operator
techniques [1,34], it is possible to derive a formally exact
set of equations for the correlation functions Smm

′

ll′ (q, t)
of the tensorial densities ρlm(q, t). For simplicity we
write the equation in the q-frame i.e. (q = q(0, 0, 1)).
For a short ranged potential every correlation function
(Alm(q, t)|Bl′m′(q)) = 〈Alm(q, t)∗ Bl′m′(q)〉 of two com-
ponents Alm(q, t), Bl′m′(q) of irreducible spherical tensors
fulfill the relations

(Alm(q, t)|Bl′m′(q)) = δmm′(Alm(q, t)|Bl′m(q)) (22)

(Alm(q, t)|Bl′m(q)) ∼ q|l−l
′| for q → 0.

The first line of (22) is just due to the fact that un-
der a rotation around the z-axis, (Alm(q, t)|Bl′m′(q))
will transform into ei(m′−m)φ(Alm(q, t)|Bl′m′(q)). Since
the correlation function has to be invariant under this
operation, the relation (22) follows. The second line is a
consequence of global rotational invariance of the system
of linear molecules. In addition, the correlation function
(Alm(q, t)|Bl′m(q)) is independent of m for q = 0, if there
are no long range correlations, which destroy the global
rotational invariance. For correlation functions which be-
have regular at q = 0 i.e. which do not contain any hydro-
dynamic poles, we are allowed to replace them for small
q by their value at q = 0 plus corrections. If there are hy-
drodynamic poles, the differences between different m can
be crucial e.g. we will see, that the dynamic correlation
function Sm22(q, z) contains for m = 1 even at small values
of q couplings to transversal current fluctuations, where
the one for m = 2 behaves regular at q → 0.

The dynamic correlation function Smm
′

ll′ (q, t) is a real
quantity [1]. Since we will discuss in the following part
of the paper also current–current correlation functions we
use the notation Smll′(q, t) ≡ (φ

ρρ
)mmll′ (q, t) The equation

for φ
ρρ

(q, t) is therefore

∂

∂t
φ
ρρ

(q, t) = −i q φ
jρ

(q, t) ≡ −i
∑
α

qα
0
φ
jα0 ρ

(q, t)

∂

∂t
φ

jρ
(q, t) = −i Γ

jρ
(q) φ

ρρ
(q, t)

−
∫ t

0

dt′ M
jj′

(q, t− t′) φ
j′ρ

(q, t)

∂

∂t
φ
ρj′

(q, t) = −i q φ
jj′

(q, t) ≡ −i
∑
α

qα
0
φ
jα0 j′

(q, t)

∂

∂t
φ

jj′
(q, t) = −i Γ

jρ
(q) φ

ρj′
(q, t)

−
∫ t

0

dt′ M
jj′′

(q, t− t′) φ
j′′j′

(q, t) (23)

where we use the short-hand notation j = {jαµ}lm, j′ =
{jα′µ′ }l′m′ and q = δll′(−1)µqα−µ(l), φ

jαµ ρ
(q, t) = δm′, m+µ

×({jαµ}lm(q, t)|ρlm′(q, 0)), φ
ρjαµ

(q, t) = φ+

jαµ ρ
(q, t) and

φ
jαµ j

α′
µ′

(q, t) = δµ+m,µ′+m′({jαµ}lm(q, t)|{jα′µ′ }l′m′(q, 0)))

are the current-density, density-current and current-
current correlation functions, respectively. The matrix
Γ

jρ
(q) = δµ,0q

α

0

kBT
Θα

(S−1(q,m)) is determined by the
static molecular correlators. ΘT and ΘR are the mass
and inertia, respectively. The products qR

0
Γ
jR0 ρ

(q) and

qT

0
Γ
jT0 ρ

(q) are the matrix of rotational and transla-
tional microscopic frequencies, respectively. The mem-
ory matrix M(q; t) = Mαα′

µµ′ = {Mα,α′

µ,µ′ }
l,l′

m,m′(q; t) =
(QL({jαµ (q)}lm|R′(t)|QL({jα′µ′ (q)}l′m′)

Θα′
kBT

is a frequency
dependent damping matrix, L is the Liouville operator, Q
is the projection operator perpendicular to the density –
and current fluctuations (see Eqs. (15, 16) and (17)). R′(t)
is a reduced time translation operator R′(t) = QeiQLQt

[34]. The memory matrix is not diagonal in m and m′,
contrary to the one appearing in [1]. This is due to the
fact, that the currents for µ 6= 0 are not components of an
irreducible spherical tensor. Instead, due to (19) and (22)
the relation m′ = m+ µ has to be fulfilled:

{Mα,α′

µ,µ′ }
l,l′

m,m′(q; t) = δm+µ,m′+µ′{Mα,α′

µ,µ′ }
l,l′

m,m′(q; t). (24)

Without the memory matrix equation, (23) would de-
scribe a system of coupled undamped harmonic “modes”,
where the modes are in this case correlation functions
of tensorial densities. The physical origin of the memory
matrix is the damping of these oscillatory modes due to
interaction between them including translation rotation
couplings, caused by the anharmonicities of the micro-
scopic interaction potentials. Of special importance will
be the induction of a stress L{jT

1 }00(q, t)/q by the force
L{jR

0 }21(q, t) caused by the rotation of the molecules. This
mechanism is responsible for the existence of hydrody-
namic singularities in auto correlation functions of non
hydrodynamic fluctuations.
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zI −q

−Γ
jρ
zI +M

jj

!
=

 
zδll′δmm′ −δll′δmm′ (−1)µqα−µ(l)

−δµ,0 kBT
Θα

qα0 δmm′ (S
−1)mll′(q) zδll′δmm′ + {Mαα′

µµ′ }mm
′

ll′ (q, z)

!
·

(33)

3.1 Molecular mode coupling theory

Within the MMCT, the memory functions are writ-
ten as a sum of bare Markovian damping terms plus
mode coupling terms. The mode coupling terms have the
form of self consistent statically renormalized one loop
approximations.

Mα,α′

µµ′ (q; t− t′)=iναα
′

µµ′ (q)δ(t − t′)+
kBT

Θα
mα,α′

µµ′ (q; t− t′).
(25)

The derivation of the mode coupling approximations
is analogous to the one in [1]. For the memory functions
with µ = µ′ = 0 the final result is identical to [1]. For
general µ, µ′, it can be written

{mα,α′

µ,µ′ }
m,m′

l,l′ (q; t) ≈ 1
2N

( ρ0

4π

)2 ∑
q1q2

′ ∑
m1m2

∑
l1l2

∑
l′1l
′
2

× {V αα′µ,µ′ }
m,m′,m1,m2
l,l′,l1,l′1,l2,l

′
2
(q, q1, q2)Sm1

l1l′1
(q1, t)Sm2

l2l′2
(q2, t),

(26)

with

{V αα′µ,µ′ }m,m
′,m1,m2

l,l′,l1,l′1,l2,l
′
2
(q, q1, q2) :=

{vαµ}m,m1,m2
l,l1,l2

(q, q1, q2){vα′µ′ }m
′,m1,m2

l′,l′1,l
′
2

(q, q1, q2)∗ , (27)

{vαµ}m,m1,m2
l,l1,l2

(q, q1, q2) :=∑
l3

{uαµ}
m,m1,m2
l,l3,l2

(q, q1, q2) cm1
l3,l1

(q1) + (−1)m(1←→ 2)

(28)

where cml,l′(q) is the direct correlation function and

{uαµ}m,m1,m2
l,l1,l2

(q, q1, q2) :=

il1+l2−l
[

(2l1 + 1)(2l2 + 1)
(2l + 1)

] 1
2 1

2
[
1 + (−1)l1+l2+l

]
×
∑
m′1m

′
2

(−1)m
′
2dl1m′1m1

(Θq1) dl2m′2m2
(Θq2)C(l1l2l;m′1m

′
2m)

×


q1(µ)C(l1l2l; 000) ; α = T√
l1(l1 + 1)C(l1l2l; 101) ; α = R

. (29)

Here the functions q1(µ) are given by

q1(µ) = q1

√
4π
3

(
µY1µ(Θq1 , Φq1)

+ (1− |µ|) Y10(Θq1 , Φq1)
)
. (30)

The functions dlm′m(Θ) are related to Wigner’s rotation
matrices (we follow the notation of Gray and Gubbins
[35]). For given Euler angles Φ,Θ, χ they are defined as [35]

Dl
mm′(Φ,Θ, χ) = e−imΦ dlmm′(Θ) e−im′χ (31)

qi, Θqi , Φqi are the standard spherical coordinates of
qi with respect to q. The prime at the first summa-
tion in equation (26) restricts q1,q2 such, that q1 +
q2 = q in order to fulfill momentum conservation. Equa-
tions (23, 26, 27) form a set of self consistent equations
for the generalized dynamic structure factors Smll′(q, t) of
linear molecules. They are slightly more general than the
equations in [1] by including the coupling to transverse
current fluctuations via a rotation-translation coupling.
It is to be expected that this coupling will affect the re-
sults for the glass transition temperatures and the non er-
godicity parameters studied in [1,30] only quantitatively
but not qualitatively [36]. The dynamics, instead, can be
changed qualitatively in certain wave vector-ranges. Es-
pecially for small wave vectors the hydrodynamic pole in
the transverse current fluctuations can have large effects
on the density relaxation spectrum. We will demonstrate
explicitly in the next chapter, that the coupling to trans-
verse current fluctuations is necessary to reproduce the
appearance of transverse sound modes in Brillouin scat-
tering spectrum of linear molecules, within the framework
of MMCT.

To calculate the light scattering spectra it is most con-
venient to perform a Laplace transform of equation (23).
With LT (f(t))(z) = i

∫∞
0 eiztf(t), with Im(z) > 0, we ob-

tain the following matrix equation(
zI −q
−Γ

jρ
zI +M

jj

)(
φ
ρρ

(z) φ
ρj

(z)

φ
jρ

(z) φ
jj

(z)

)
=−

φ0

ρρ
φ0

ρj

φ0

jρ
φ0

jj

·
(32)

Here we have chosen a simplified notation. In the q-frame
the first matrix in equation (32) would be explicitly:

see equation (33) above.

The matrix of static correlators on the right hand side of
equation (32) isφ0

ρρ
φ0

ρj

φ0

jρ
φ0

jj

 =
(
δmm′S

m
ll′(q) 0

0 δµµ′δαα′δmm′δll′
kBT
Θα

)
·

(34)

It is obvious from equations (32) and (33) that the
sum rules (11) and (12) are automatically fulfilled, if the
approximations for the memory functions obey the very

weak requirement, that limz→∞+iε
{Mαα′

µµ′ }
mm′
ll′

z = 0, where
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ε is an arbitrary positive number. Since memory functions
are regular for t = 0 in most physical cases, they even van-
ish as 1/z for z →∞. This property is especially fulfilled
for the selfconsistent MMCT and also for the primitive
theory used in Section 4.

4 Glassy dynamics and hydrodynamic modes

Light scattering usually measures at small wave vec-
tors q. Therefore the correct treatment of hydrodynamic
modes becomes crucial for explaining light scattering ex-
periments. To obtain the generalized density correlation
Smll′(q, t) for small wave-vectors, it would be necessary to
solve the self consistent set of equations (23, 26, 27) for
all wave-vectors and all l,m, since all degrees of free-
dom are coupled via mode coupling integrals. To study
the light scattering problem, we first want to restrict
the discussion to the fluctuations, which are most rel-
evant for the understanding of light scattering exper-
iments. These are the density fluctuation ρlm(q, t) for
(l,m) = (0, 0) and 2,m their respective current fluctu-
ations {jT

0 }00(q, t), {jR
0 }2m(q, t), which are directly mea-

sured in light scattering experiments (i.e. l = 0, 2 and
m = 0, 1, 2) and the current fluctuations {jT

µ }00(q, t),
which are slow, since the total currents {jT

µ }00(q = 0, t)
are conserved. Here we have also neglected the current
fluctuations {jT

0 }2m(q, t). Their contribution will be of
higher order in q, as can be seen by comparing the transla-
tional and rotational current contribution in the first line
of (23) together with (21). Additional simplification occur
in the limit q → 0, due to relation (22) for correlation
functions of spherical tensors in a rotationally invariant
system.

1. The static correlation function is Smll′(q = 0) =
δll′ Sl ≡ Smll (q = 0), independent of m.

2. The component of the matrix Γ
jρ

of equation (32)
with l = l′ = m = µ = 0 and α = T reduces to
kBT

mS00(q)q = c2‖q. Here c‖ is the longitudinal isothermal
sound velocity in the liquid.

3. The component of the matrix Γ
jρ

of equation (32)
with l = l′ = 2, µ = 0 and α = R reduces to
kBT
ΘS2(q)

√
6 = ω2

R√
6
, where ωR is a classical frequency,

related to the rotation of the quadrupoles.

4. The memory matrix {MTT
00 }00

00(i0) has to reduce to
iηlq

2, where ηl = ηB + 4
3ηS is the longitudinal viscosity

of the liquid. The transversal memory function is for
q → 0, z → i0 given by {MTT

11 }00
00(i0) = iq2ηS, where

ηS is the shear viscosity. The q2 dependence of the
translational memory functions {mTT

µµ′}00
00 are due to

momentum conservation. The parameter {KTT
µµ′}00

00

and {τTT
µµ′}00

00 in (35) are identical to the longitudinal
modulus Kl and the longitudinal α-relaxation time
τl for µ = µ′ = 0 and the shear modulus GS and
the transverse α-relaxation time τS for µ = µ′ = 1,
respectively. With this choice the Maxwell relations
ηl = η0

l + KlτB and ηS = η0
S + GSτS, where η0

l , η0
S

are the contribution from the Markovian part of the
memory matrix, are fulfilled in the liquid.

Due to the local nature of the cage effect, which is re-
sponsible for the slowing down of structural relaxations, it
is strictly speaking not possible to study self-consistently
the hydrodynamic limit, without the knowledge of relax-
ations on local length scales r ∝ r0, where r0 is on the
scale of intermolecular distances. But since the memory
functions mα,α′

µ,µ′ (q, t) do not contain any hydrodynamic
pole by construction, they are non trivial only due to the
glass transition dynamics, which in turn is independent of
the hydrodynamic fluctuations at short wavelength. It is
e.g. theoretically understood [37] and verified in simula-
tions [38], that systems with qualitatively different hydro-
dynamic behavior exhibit the same glassy dynamics. To
obtain the qualitative behavior of equations (23, 26, 27),
it is therefore sufficient to replace the mode coupling part
of the memory function matrix by its leading wave-vector
behavior multiplied with a function, which is able to de-
scribe glassy dynamics. Although the memory functions
are free of hydrodynamic singularities, they exhibit the
full frequency dependence of glassy dynamics (“fast” and
“slow” β-relaxations, α-relaxation plus additional com-
plications as e.g. contributions from Bose peak phenom-
ena [39,40]). For reproducing all details of light scattering
spectra, which are directly related to glassy dynamics, two
approaches are possible. Either an ansatz has to be found,
which is compatible with all the mentioned phenomena, or
the full set of microscopic equations, derived in Section 3,
had to be solved numerically, to account at least for β- and
α-relaxation, (see e.g. [41]). But before this very difficult
problem can be treated, it is necessary to demonstrate,
that the structure of the equations derived in Section 3 can
account for all the hydrodynamic poles and their interplay
with the most basic phenomena of structural relaxations
i.e. the α-relaxation. To achieve that, it is sufficient to use
an α-relaxation ansatz for the memory function. To make
the analysis as simple and explicit as possible, we choose
simple exponentials (Maxwell theory) for the non vanish-
ing memory functions, multiplied with their leading wave
vector dependence, qn, n ∈ {0, 1, 2}

{mα,α′

µ,µ′ }
m,m′

l,l′ (q, z) = −
qn{Kα,α′

µ,µ′ }
m,m′

l,l′ (q) {τα,α
′

µ,µ′ }
m,m′

l,l′

z {τα,α′µ,µ′ }
m,m′

l,l′ + i
·

(35)

The small wave vector behavior of the memory functions
(35) can be derived from (22) and (19) and the conserva-
tion laws for total momentum in every spatial direction for
l = 0 or l′ = 0. The relaxation times {τα,α

′

µ,µ′ }
m,m′

l,l′ are taken
at q = 0. The projection operator formalism guarantees,
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that this value is nonzero, since the memory functions
do not contain hydrodynamic poles. The Markovian part
of the memory functions is in the following neglected, if
it would vanish at wave vector q = 0. There are two se-
vere consequences of this approximation together with the
α-relaxation ansatzes for the memory functions. First the
sound poles in the glass do not show any damping, instead
of a damping proportional to q2. Second, a fit with the
Maxwell ansatz or any other ansatz, which only describes
the α-relaxation, would lead to an artificial time scale sep-
aration for the α-relaxation times of the different memory
functions (see e.g. the discussion in [13]). The source of
both errors, is the neglect of “fast” β-relaxation phenom-
ena, which also contribute to the memory functions.

The task is now to show, that the predicted spectra
are consistent with sum rules and the qualitative behav-
ior of light scattering experiments, which already follow
very generally from a purely generalized hydrodynamic
analysis [14] and that the interplay of rotational and trans-
lational motions lead to the qualitatively correct renor-
malizations of the hydrodynamic poles, when entering the
glassy regime.

If we order our basic variables in the form
ρ00, ρ2m, {jR

0 }2m, {jT
1 }00, the frequency independent ma-

trices appearing in equation (32) are

q =


q 0√

6 0√
6 0√

6 0



Γjρ =


c2‖q

ω2
R/
√

6
ω2

R/
√

6
ω2

R/
√

6
0 0 0 0

 · (36)

The slow part of the memory matrix is given by

zI +m
jj

=
z− q2Klτl

zτl+i − qKlRτlR
zτlR+i

−qKlRτlR
zτlR+i r z−KRτR

zτR+i

z− KRτR
zτR+i − qKSRτSR

zτSR+i r

z−KRτR
zτR+i

−qKSRτSR
zτSR+i z − q2GSτS

zτS+i


(37)

where r = ΘT
ΘR
·

The leading wave-vector dependence for q → 0 of the
matrix elements is derived from conservation laws and
equation (22). All the matrix elements, which are left
empty are exactly zero due to m, m′ selection rules (see
Eq. (22)). For the appearance of transversal sound modes
in the light scattering spectra and the explanation of the
Rytov Dip it is crucial that KSR 6= 0, which quantifies the
memory matrix-element between the transversal current
for l = 0 and the rotational current jR

2m for m = 1. The
four parameters Kl, KR, KlR and KSR have to be such

that the memory matrix remains positive definite for all
frequencies. For z = 0 the relation

KlKR τlτR −K2
lR τ2

lRr > 0

and KRGS τSτR −K2
SR τ2

SRr > 0 (38)

follow and the diagonal elements Kl,KR and GS have to
be positive. We also note that the exact relations

GSKR ≥ K2
SRr (39)

KlKR ≥ K2
lRr (40)

can be derived from the Cauchy relations

{mTT
11 }00

00

′′
(ω){mRR

00 }00
22

′′
(ω) ≥ {mTR

10 }00
02

′′
(ω)2r (41)

{mTT
00 }00

00

′′
(ω){mRR

00 }00
22

′′
(ω) ≥ {mTR

00 }00
02

′′
(ω)2r (42)

by considering the low and high frequency limits of equa-
tions (41) and (42).

4.1 Hydrodynamic poles

Before we discuss the numerical solution of equation (32),
it is useful to investigate its hydrodynamic poles. The
only conserved quantities are (besides the total energy)
the center of mass density and the total momentum in ev-
ery spatial direction. They are the cause of the hydrody-
namic poles (i.e. poles which show dispersion laws z ∝ qn,
with n = 1, 2) in the respective auto correlation functions
(Φρρ)0

00 and {(Φjj)TTµµ }00
00}. But due to the dynamic cou-

pling of the rotational degrees of freedom and the trans-
lational degrees of freedom, which appear naturally in
the memory matrix, also the correlation functions of non
hydrodynamic variables do exhibit hydrodynamic poles.
To study this phenomena, we invert the matrix in equa-
tion (32), use the ansatz z = pqn, n ∈ {0, 1, 2} and expand
the denominator in powers of q. For n = 0 this gives poles
of non–hydrodynamic nature ( rotational modes with a
frequency p), for n = 1 propagating modes (transverse or
longitudinal phonon modes) are described with p being
the sound velocity and for n = 2 a diffusive mode with
a transport coefficient (in our case generalized viscosity)
−p/i is obtained.

Let’s first study the transversal current fluctuations.
In a simple liquid the transversal current correlator
{(Φjj)TT

11 }00
00(z) exhibits a viscous pole at z = −iGSτSq

2.
This is also the case for the liquids of linear molecules,
studied in this paper. But in addition, due to the trans-
lation rotation coupling, also the auto correlation func-
tions of densities ρlm(q, t) or currents {jT

0 }lm with l = 2,
m = 1 do exhibit the transversal hydrodynamic poles.
The reason for that is, that the tensor {jT

1 }00 has irre-
ducible spherical components with l = 2, m = 1, and
thus is able to couple dynamically to the specified ten-
sors via the memory functions with m = 1. There is also
a non-hydrodynamic singularity related to the rotational
motion of the molecules. If we restrict the correlators to
their poles (neglecting the glassy dynamics), the poles



332 The European Physical Journal B

of the (Φρρ)1
22(z), {(Φjj)RR

00 }11
22(z), {(Φjj)TT

11 }00
00(z) compo-

nents are given by:(
z2 + i(KRτR + νR)z − ω2

R

) (
z + iGS τSq

2
)

= 0. (43)

The two poles couple into the dynamic correlators with
different amplitudes. The coupling of the second pole into
the l = 2, m = 1 rotational component causes the Rytov
dip. As an example we therefore give the the term in lowest
order of q of the strength of the transverse sound mode
coupling into the (Φρρ)1

22(z) component. In the vicinity of
the Rytov dip this component can be expressed as:

(Φρρ)1
22(z) =

−K2
SRτ

2
SRq

2

ω2
R

(
−6S2r

z + iGS τSq2

)
· (44)

Therefore the strength of the Rytov dip is proportional to
q2 times the matrix element which couples the transverse
current to the m = 1 rotational motion and vanishes if
the rotational frequency ωR goes to infinity.

As soon as zτS � 1, the diffusive pole will turn
into a propagating transversal sound mode. In simple
liquids this pole will be at z = ±

√
GSq. Whereas in

molecular liquids the transversal sound velocity is renor-
malized by contributions of the rotational degrees of
freedom. The pole structure of the specified correlators
(Φρρ)1

22(z), {(Φjj)RR
00 }11

22(z), {(Φjj)TT
11 }00

00(z) is in the su-
percooled regime given by:(
z2 + iνRz − ω2

R −KR

)(
z2−(GS −

K2
SRr

(KR+ω2
R)

)q2

)
= 0.

(45)

I.e. the transversal sound pole is given by

z = ±
√
GS −

K2
SRr

(KR + ω2
R)

q := ±c⊥q. (46)

The transverse sound velocity is shifted to smaller fre-
quencies compared to what is expected in a simple liquid.
This trend was already noted in [13]. Note, that due to the
positivity of ω2

R and the exact relation (39), the transver-
sal sound velocity is always well defined. I.e. by treating
the rotation translation coupling explicitly, we are able
to describe the contribution of the rotational motion to
the transversal sound velocity c⊥. The microscopic rota-
tional translational coupling is the cause of the appear-
ance of hydrodynamic poles in correlation functions of
non hydrodynamic (i.e. for q → 0 non conserved) vari-
ables and of a renormalization of the transversal sound
velocity. Analogous behavior is found for center of mass
and longitudinal current fluctuations. The amplitude of
the transverse sound pole in lowest order of q which oc-
curs in the (Φρρ)1

22(z) component can be derived. It is in
the vicinity of the transverse phonon mode given by:

(Φρρ)1
22(z) =(

K2
R(GS(KR + ω2

R))
(KR + ω2

R)(K2
SR(ω2

R −KR)r +GSKR(KR + ω2
R))

)
× −6S2

z ±
√
GS − K2

SRr

(KR+ω2
R)
q

· (47)

Therefore the transverse phonon mode can only be ob-
served as long as the rotation couples via KR to the struc-
tural relaxation.

In the fluid (τlc‖q � 1) the longitudinal compo-
nents with l = 0, m = 0 and the rotational com-
ponents with l = 2, m = 0 contain two types
of modes. First the l = 2 rotational mode and
second the longitudinal phonon mode. The poles of
(Φρρ)0

00(z), (Φρρ)0
22(z), {(Φjj)TT

00 }00
00(z), {(Φjj)RR

00 }00
22(z)

are given by:(
z2 + i(KRτR + νR)z − ω2

R

) (
z2 − c2‖q2 + iKlτlzq

2
)

= 0.

(48)

The first pole gives the damped rotation of the molecule,
whereas the second term describes the usual longitudi-
nal sound modes in the liquid at z± = ±c‖q with the
damping Klτlq

2/2. This expression is valid as long as
Klτlq

2 � τlc‖q � 1. The amplitude of the longitudinal
phonon mode in (Φρρ)0

22(z) is proportional to q2, where it
is of order q0 in (Φρρ)0

00(z). Its contribution to the sound
pole in the IVV-spectrum in the liquid can therefore be
neglected.

In the solid (τlc‖q � 1), the sound pole will
be shifted to higher frequencies and, as an arti-
fact of the Maxwell theory, the damping vanishes.
An inclusion of β relaxation phenomena will cure
this unphysical behavior. We obtain as poles of the
(Φρρ)0

00(z), (Φρρ)0
22(z), {(Φjj)TT

00 }00
00(z), {(Φjj)RR

00 }00
22(z)

components the solution of:(
z2 + iνRz − ω2

R −KR

)
×
(
z2 − (c2‖ +Kl −

K2
lR

(KR + ω2
R)

)q2

)
= 0 (49)

i.e. the longitudinal sound velocity c∞ is, as the transver-
sal sound velocity, modified by rotational degrees of
freedom

c2∞ = c2‖ +Kl −
K2

lRr

(KR + ω2
R)
· (50)

Due to the positivity of ω2
R and the exact relation (40)

the sound velocity is always shifted to higher values in the
glass, but the shift is reduced compared to what would be
expected in a simple liquid. In analogy to the transverse
mode we can give the low q expansion for the amplitude of
the longitudinal sound pole in the (Φρρ)0

22(z). In the vicin-
ity of the longitudinal phonon frequency this component
is given by:

(Φρρ)0
22(z) =

(
KR

KR + ω2
R

)
−6S2

z ∓
√
c2‖ +Kl − K2

lRr

(KR+ω2
R)

·

(51)

Therefore a longitudinal phonon in the (Φρρ)0
22(z) compo-

nent is always observable in the supercooled liquid as long
as the rotational motion couples via the matrix element
KR to the structural relaxation.
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4.2 A solution of the equation of motion

We have now solved the equation of motion for some
chosen but fixed parameters. Close to the glass transi-
tion it is only the scale of the α-relaxation time, which
is changing considerably. If the time temperature super-
position principle (TTS) is fulfilled exactly all relaxation
times {ταα′µµ′ }mm

′

ll′ (T ) can be written as {τ̂αα′µµ′ }mm
′

ll′ f(T ).
The function f(T ) is the same for all relaxation times and
is a quickly changing function of temperature. In the ide-
alized mode coupling theory it would be (|T − Tc|/Tc)−γ .
Often used fit formulas are the Vogel-Fulcher function
f(T ) = A exp(−B/(T − T0)) or as a special case the
Arrhenius law (T0 = 0). The prefactors {τ̂αα′µµ′ }mm

′

ll′ are
constant, but in general different for different combina-
tions of µ, µ′, α, α′, l, l′, m, m′. Very often the TTS
is violated at lower temperatures. In this case also the
{τ̂αα′µµ′ }mm

′

ll′ vary slowly with temperature.
Since we are in this paper only interested in qualitative

aspects of the solution, all α-relaxation times were taken
equal i.e. {τ̂αα′µµ′ }mm

′

ll′ = 1. The function f(T ) is called
τ in the following. In this way we demonstrate how we
can explain the complete viscosity range from the highly
viscous liquid towards the glass by just varying a single
parameter, τ .

In the Figures 2–13 we have chosen the following pa-
rameters: The frequency scale for the rotational frequency
was set to unity ωR = 1. In these units the other param-
eters where chosen as c‖ = 0.6, GS = 1, νR = 5, Kl = 1,
KR = 1, KlR = KSR = 1/2, r = 1. The external mo-
mentum q selected by the scattering experiment is set to
q = 0.02. For zτ � 1 the scattering experiment probes an
amorphous solid whereas for zτ � 1 it probes a liquid.
In all figures the frequency z was chosen to be slightly
imaginary: z = ω + i× 10−4.

In Figure 4 we have plotted from a solution of equa-
tion (32) the imaginary part of the center of mass cor-
relator S0

00(q, z) which according to equation (7) forms
the main part of the polarized light scattering intensity
IVV(ω). For τ = 1� (c‖q)−1 the Brillouin line, caused by
a longitudinal sound wave, is at c‖q = 0.012. The damping
is proportional to q2 (see Eq. (48)). For τ = 100 ≈ (c‖q)−1

a broad central peak occurs together with a strong damp-
ing of the phonon modes. This is a well known phenom-
ena which was already explained by Mountain [42] for the
Brillouin spectrum. The same mechanism applies here. If
we calculate the hydrodynamic sound pole with the con-
dition ωτ = 1 the equation for the sound pole is

ω2 + iωνq2 + i
Kl

2
q2 − (c2‖ +

Kl

2
)q2 = 0. (52)

This equation can be solved with the ansatz ω = c∞q +
iΓq+O(q2) i.e. the damping is of order q � q2 instead of
order q2. This effect is even stronger in real glass-formers,
where the α-relaxation is better described by a stretched
exponential behavior instead of a single exponential. We
can estimate, that for frequencies in the high frequency
wing of the α-relaxation, where the von Schweidler law
applies for the memory-functions (m(z) ∝ (−iz)−b), the
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Fig. 5. The susceptibility spectrum χ′′
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00(q, ω) = ωS′′

0
00(q, ω)

for the same parameters as in Figure 2 on a logarithmic fre-
quency scale.

pole becomes a cut at ω = ±(ĉ∞ + iΓ )q1− b2 . If we in-
clude β-relaxation like phenomena with ωm′′(ω) ∼ ωa,
we obtain in the frequency range, where this fractal be-
havior holds, two strongly damped propagating modes at
ω = ±c∞q + iΓq1+a. Since the fractal behavior is ex-
perimentally observed in depolarized spectra even below
Tg, where the α relaxation is far below the experimental
frequency range (see e.g. [43]), it could account for the
anomalous strong damping of the Brillouin line in the sub
Tg regime [43]. In this context it is important to note, that
the actual physical reason for the appearance of a fractal
part of the susceptibility spectrum is not relevant for the
described mathematical mechanism of producing strong
damping of phonon modes. The β-relaxation phenomenon
close to the critical temperature of mode coupling theory
is as good a candidate as the still not yet understood frac-
tal behaviour below Tg [43–45]. For τ = 105 � (c‖q)−1

the light scattering probes a solid with a well defined, now
renormalized, phonon mode with a renormalized sound ve-
locity which is given by equation (50). As discussed above,
the speed of sound in the glass is always bigger than the
speed of sound of the liquid.
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Fig. 6. The spectrum S′′
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Fig. 7. The susceptibility spectrum χ′′
1
22(q, ω) = ωS′′

1
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on a logarithmic frequency scale. The occurrence of the trans-
verse sound wave can be clearly seen in the supercooled regime.

The next Figure 6 shows the spectral function of
S1

22(q, z), which gives the only contribution in forward
scattering direction and zero contribution in backscat-
tering geometry for the depolarized geometry due to the
cos2(Θ/2) factor (see Eq.(8)). The S1

22(q, z) component is
strongly influenced by the coupling of transverse currents
to the m = 1 rotational current.

(Q̂L{jR
0 }21(q)| −1

z − Q̂LQ̂
|Q̂L{jT

±1}00(q)) ≈ −qKSRτ

zτ + i
·

(53)

Deep in the liquid for τ = 1 � (c‖q)−1 the purely diffu-
sive transverse currents cause the Rytov dip at zero fre-
quencies. This is shown in the inset of Figure 6. When
supercooling the liquid the Rytov dip disappears and a
broad central peak shows up for τ = 100 ≈ (c‖q)−1 which

develops a shoulder at the frequency of shear waves. When
further supercooling the liquid for τ = 105 � (c‖q)−1

the propagating transversal phonon modes of the solid at
±c⊥q shows up (see Eq. (46)).

A further contribution to the spectrum of depolarized
light scattering according to equation (8) is the m = 2
component. Due to the factor sin2(Θ/2) it is the only
contribution in backscattering geometry. Since it does not
couple to any hydrodynamic mode, it has the simple form

S′′
2
22(ω) = Sm22(q = 0)

×
6ω2

R(
KRτR

(ωτ)2 + 1
+ νR)

(ω2 − ω2
R −

ω2τKRτR
(ωτ)2 + 1

)2 + ω2(νR +
KRτR

(ωτ)2 + 1
)2

·

(54)

The spectral function of S2
22(q, z) in Figure 8 shows for

τ = 1 � (cκq)−1 no structure for low energies (far below
the rotation spectra). It has no Rytov dip since there is no
matrix element which couples shear waves to them = 2 ro-
tational currents. The absence of a Rytov dip is shown ex-
plicitly in the inset of Figure 8. When supercooling the liq-
uid a broad central peak shows up for τ = 100 ≈ (cκq)−1

which narrows in the solid for τ = 105 � (cκq)−1. In our
units the height of the peak is always KRτ + νR and the
width is of order 1/τ . The absence of transverse modes in
backscattering geometry is clearly seen in experiments (see
e.g. [47] or earlier [48] where light scattering in backscat-
tering geometry was applied to the molecular glass former
salol). In other scattering geometries the VH-spectrum ex-
hibits ideally only the transverse phonon (for ωτS � 1).
We want to point out that there are two qualitatively
different mechanism which lead to the observation of a
phonon line in a depolarized light scattering geometry.
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22(q, ω). As in Figure 4 on a logarithmic frequency scale.

The first one is leakage of the longitudinal phonon mode
due to an imperfect polarization filter and should not be
present in an ideal depolarized geometry. The second one
at a lower frequency is a direct transverse phonon which
couples to the S1

22(q, ω) component.
A further contribution which we have plotted is the

S0
22(q, ω) component. It enters according to equation (7)

into the intensity for the polarized light scattering geome-
try. There is a non zero matrix element which couples the
longitudinal phonon mode to the m = 0 rotational mode
which we approximate from equation (32) as

({jT
0 }00(q)LQ̂(Q̂(z −L)Q̂)−1Q̂L{jR

0 }20(q)) ≈ −qKlRτ

zτ + i
·

(55)

Therefore the longitudinal phonon mode shows up in the
m = 0 component when the liquid is supercooled. This is
shown in Figure 10. For τ = 1 no coupling to the longi-
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Fig. 10. The spectrum S′′
0
22(q, ω) for the same parameters as

in Figure 4. The longitudinal phonon couples into this compo-
nent and becomes observable when the light scattering exper-
iment starts to probe a solid.

tudinal phonon mode can be observed. This can easily be
understood. The coupling term (55) reduces to iKlRτq for
c‖qτ � 1 at the position of the phonon mode ω = c‖q.
Since the coupling term to the phonon mode will appear in
second order perturbation theory in q, the phonon mode
is multiplied with a factor (KlRτq)2 i.e. the maximum
height of the phonon contribution in the spectrum S′′022

will be of order K2
lRτ/Kl, which is equal 1, in the units

we are using in Figure 10. For c‖qτ � 1 the coupling
term (55) is Klq/ω i.e. at ω = c‖q, the coupling con-
stant is of order 1 and the height of the phonon mode is
again of order K2

lRτ/Kl � 1. The phonon mode can be
detected as soon as c‖qτ ∼ 1. In our units this happens
for τ ∼ 50. In Figure 10 a broad shoulder can be seen for
τ = 100, which turns into a clearly defined phonon mode
(τ = 103, τ = 105).
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The S′′000(q, ω), S′′022(q, ω) and S′′222(q, ω) sum up
according to equation (7) to give the total polarized
light-scattering intensity. This is plotted in Figure 12
where we have plotted a fictitious VV-spectrum under the
additional assumption that the squared isotropic part of
the polarizability is ten times as big as the anisotropic
one (a2 = 10g2). Note that the orientational correlator
Sm22(q, ω) and the translational center of mass component
S0

00(q, ω) are of completely different origin even though a
mixing of the poles occurs in the supercooled regime. This
is best seen in the liquid regime where the microscopic fre-
quency of the orientation is a rotational motion whereas
the microscopic frequency of the center of mass component
is given by the longitudinal phonon mode. It is experimen-
tally impossible to extract S0

00(q, ω) out of a measured
spectrum except for the case of vanishing anisotropy.

4.3 Susceptibility spectra

In order to make the influence of structural relaxations
more transparent, we have plotted on a logarithmic fre-
quency scale the spectral functions of the susceptibilities

χ′′
m
ll′(q, ω) = ωS′′

m
ll′(q, ω) (56)

which correspond to the quantities plotted in Figures 4, 6,
8, 10 and 12. Figure 5 shows the spectrum χ′′000(q, ω). The
central peak of Figure 4 turns into an α–peak which upon
supercooling the glass transition moves out of the micro-
scopic frequency which is given by the longitudinal phonon
mode. We want to stress again that due to our particular
simple choice of the memory function (Maxwell theory)
the α-peak shown in Figures 5, 7, 9, 11, 13 does not have
the correct stretched form known for glassy systems and
there is no true β relaxation regime. If the molecular sys-
tem has no anisotropy (in Eq. (7) g = 0) this contribution
to light scattering is the only direct one. The area under
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Fig. 13. The susceptibility spectrum ωIVV(q, ω) on a logarith-
mic frequency scale.

the α-peak Iα on a logarithmic frequency scale, which is
also the area under the Mountain peak [42] on a linear
frequency scale and the overall intensity Itot are in this
case related to the non-ergodicity parameter (Edwards-
Anderson parameter) f0

00(q, ω) = Iα/Itot for the center of
mass component.

Figure 7 shows the spectral function of χ1
22(q, z).

The microscopic is given by the rotational l = 2 mode
roughly at ωR. When the liquid is supercooled towards
the glass transition the shear wave shows up when the
α-relaxation moves over the frequency range range for
transverse phonons at ω = c⊥q. As expected the m =
2 component χ′′222(q, ω) in Figure 9 only shows the
broad rotational mode and the α-relaxation since there
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is no matrix element in the memory kernel which couples
to the m = 2 component.

Similar to the m = 1 component the m = 0 component
also shows a coupling of a hydrodynamic mode. However
in this case it is the longitudinal phonon which couples into
the m = 0 susceptibility. The spectral function of χ0

22(q, z)
on a logarithmic frequency scale is plotted in Figure 11.

The overall situation for a fictitious spectrum
ωIVV(q, ω) is shown in Figure 13 for the same param-
eters as in Figure 12. Note that due to the mixture of
l = l′ = 0 and l = l′ = 2 components the Brillouin line of
the longitudinal phonon consists of two components. One
is caused by the direct observation of the center of mass
component where the longitudinal phonon gives a low ly-
ing microscopic frequency whereas the other contribution
comes from the phonon mode coupling into the l = l′ = 2,
m = 0 component.

4.4 Light-scattering near an orientational instability

Further physics which is contained already in equa-
tion (32) are some aspects of light scattering near an
orientational instability (e.g. near an isotropic-nematic
transition). From equation (32) one can see that the am-
plitude of the light scattering intensity is for the depo-
larized light scattering spectra mainly given by the static
density correlation Sm22(q). Close to a nematic transition,
a weakly first order phase transition, Sm22(q) increases
strongly for small q where limq→0 S

m
22(q)−1 = κKerr is the

optical Kerr constant. On the other hand the rotational
frequency ωR (in Eq. (36)) contains Sm22(q)1/2 in the de-
nominator. In this way our equations describe the broad
central peak together with the strong scattering intensities
at the isotropic-nematic transition.

5 Relation to other theories

The main issue of the paper so far, was to demonstrate
that the theory of light scattering can be brought in a
form, which is accessible to tested theories for the dynam-
ics of supercooled molecular liquids and to show that the
structure of the equations of motion reproduce the light
scattering experiments for molecular liquids. We now will
show how the phenomenological equations underlying the
most recent theory of light scattering for molecular liq-
uids [13] can be rigorously derived within our theory. To
keep the derivation as simple as possible, we will restrict
ourselves to the variables ρ00, ρ2m, {jT

µ }00, {jR
0 }2m used in

Section 4. We also will comment on [12] and on [14]. In Ap-
pendix A we demonstrate for the theory of Anderson and
Pecora [5] how light scattering theories for linear molecules
based on projection operator formalisms can be related to
our theory.

Dreyfus et al. [13] start by writing the continuity equa-
tions for the center of mass density fluctuations and the
center of mass momentum density fluctuations,

∂

∂t
ρ00(q, t) = iqj(q, t) (57)

∂

∂t
ji(q, t) = iqjσji(q, t) , (58)

where ji are the Cartesian components of the center of
mass current fluctuations and σij are the Cartesian com-
ponents of the stress-fluctuations. To obtain a closed set
of equations it is necessary to write down constitutive
equations for the stress-fluctuations which relate them to
the current and density fluctuations. Instead of using phe-
nomenological ansatzes, as it was mostly done in the ex-
isting literature, we will write down exact equations for
the stress-tensor fluctuations using generalized constitu-
tive equations. By using a formalism introduced in [33]
we can express the stress-fluctuations for vanishing am-
plitude of the wave-vector exactly by the fluctuations of
the basic set of variables, which we used in Section 4 (for
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simplicity it is more convenient to use the Cartesian com-
ponents of the center of mass current fluctuations)

σij = ρ00(q, t)
1

S0
00(q = 0)

(ρ00|σij)

+ijr(q, t)qk ⊗
m

NkBT
(σrk|R′(t)|σij) (59)

+i{jR0 }2m(q, t)⊗ Θ

NkBT
(L{jR

0 }2m|R′(t)|σij).

Here, repeated indices are summed over and we de-
fined A ⊗ B =

∫ t
0

dt′ A(t′)B(t − t′). R′(t) is again the
reduced time propagator acting in the space perpen-
dicular to the chosen density and current fluctuations.
Therefore no terms of the form (Lρlm|R′(t)|σij) appear
in equation (59). There are in principal terms propor-
tional to the fluctuations ρ2m. But since in equation (57)
only the combination qjσji appears, the proportional-
ity factor contains the term qj(ρ2m|σji) = (ρ2m|Lji) =
(Lρ2m|ji) =

√
6 ({jR

0 }2m|ji) = 0 [1]. Therefore
no fluctuations proportional to ρ2m do contribute to the
generalized hydrodynamic equations. For q → 0 the equa-
tions (59) considerably simplify. The only symmetric ten-
sor of rank four (σrk|R′(t)|σji), which does not van-
ish for q → 0 is (σrk|R′(t)|σji) = (p|R′(t)|p)δkrδij +
(σsij |R′(t)|σsij)(δrjδki + δriδkj − 2

3δijδrk), where p =
1
3

∑
i σii is the scalar part and σsij the traceless part

of the stress-tensor fluctuations. The third row of equa-
tions (59) can be evaluated by transforming σij to spher-
ical components σlm. Then, for q → 0, the identity
{jR

0 }2m|R′(t)|σlm′) = δl2δmm′(L{jR
0 }20|R′(t)|σ20) and

ρ̇2m(t) =
√

6{jR
0 }2m(t) can be used. Therefore the con-

stitutive equations (59) reduce to

σij = δP (t)δij +
ηB(t)
n
⊗ iqj(t)δij (60)

+
1
n
ηS(t)⊗ τij(t) (61)

−µ(t)⊗ Q̇ij(t).

with ηB(t) = 1
kBT V (p|R′(t)|p), ηS(t) = 1

kBT V

×(σs
ij |R′(t)|σs

ij) being the generalized bulk viscosity and
shear viscosity, respectively [33]. The tensor τij = i(qijj +
qjji − 2

3qjδij) is the strain tensor. The fluctuations δP (t)
of the internal hydrostatic pressure due to density fluctu-
ations are given by Kρ00(q, t), where K = kBT

S0
00(q=0)

is the
(static) bulk module, i.e. the inverse of the compressibility
κ. The tensor Q is given by

1√
6

−
ρ20√

6
+ ρ22

2 + ρ22

2 −iρ22
2 + iρ22

2
−ρ21

2 + ρ21

2

−iρ22
2 + iρ22

2 −ρ20√
6
− ρ22

2 −
ρ22

2 iρ21
2 + iρ21

2

−ρ21
2 + ρ21

2 iρ21
2 + iρ21

2

√
2
3ρ20


(62)

and the function µ(t) is the the matrix element µ(t) =
−θ

kBTN
(L{jR

0 }20|R′(t)|τ20). Now we only need another con-
stitutive equation for the tensor Qij(t). Using the same

strategy as in the derivation of the constitutive equations
for the stress tensor we easily derive

d2

dt2
Qij(t) = −ω2

RQij(t) + µ(t)⊗ τij(t)r

−{MRR
00 }00

22(t)⊗ Q̇ij(t) (63)

where r = m
Θ · Here the same function µ(t) as in

equation (60) appears naturally within the formalism,
confirming the Onsager principle. The memory-function
{MRR

00 }00
22(t) is the same as used in Section 3. equa-

tions (57–63) are exactly the equations used in [13]. With
our formalism, we can identify the phenomenologically in-
troduced functions µ(t) and Qij(t) of [13]. We also want
to emphasize, that the convolution integrals in time i.e.
the retardation effects are a necessary consequence of the
slowing down of structural relaxations and its effect on
the frequency dependent viscosities and the rotation-stress
coupling function µ(t). The ansatz of Quentrec [8], where
the viscosities and µ(t) are replaced by only temperature
dependent functions is therefore not acceptable for the
description of supercooled liquids.

It is important to note, that the form of the equa-
tions (57–59) depends crucially on the chosen set of vari-
ables. If we would not have chosen the rotational currents
{jR

0 }2m(q, t) explicitly as a member of our basic set of
equations the last line of equation (60) would contain a
coupling µ̂(t) ⊗ Qij(t) to the tensor Qij instead of to its
time derivative. The function µ̂(t) can also be expressed
in terms of a (modified) reduced time propagator R̂(t),
µ̂(t) ∝ ({jR

0 }20|R̂′(t)|τ20). In addition, the equation for
Qij(t) were of first order in time instead of second order.
Wang uses a mixed representation [12]. His constitutive
equation for the stress tensor coincides with equation (59),
but the equation for Qij is only of first order. For deriving
exactly such a set of equations, it were necessary to use
different projection operators for deriving the constitutive
equation and the equation for the tensor Qij . From our
point of view there are mainly two reasons why it seems
more advantageous to choose one single set of basis vari-
ables including the currents {jR

0 }2m(q, t). First, approx-
imation schemes for force-force autocorrelation functions
i.e. the memory-function {Mαα′

µµ′ }mm
′

ll′ (t) seem to be eas-
ier, than for mixed current-force memory-functions, which
would appear, when only the densities ρlm(q, t) and the
conserved currents {jT

µ }lm(q, t) were used as variables.
Second, by using one set of variables the Onsager rela-
tions are automatically fulfilled, since there appears the
same function µ(t) in the equation for the stress and the
tensor Qij(t). In the approach of Wang it is important to
choose the approximations for the different functions µ̂(t)
and µ(t) carefully, such that the Onsager principle is guar-
anteed. (Essentially the time derivative of µ̂(t) is related
to µ(t).)

The approach of [14] is more general than ours, since
no assumptions on the scattering mechanisms were used
to derive the general form of light scattering spectra of
supercooled liquids. This was achieved by only using the
hydrodynamic variables center of mass density and center
of mass currents as the basic set of variables for applying



A. Latz and M. Letz: On the theory of light scattering in molecular liquids 339

constitutive equations to the dielectric tensor fluctuations.
In this way the coupling mechanisms between rotation and
translations in molecular liquids are not explicitly treated
but lead implicitly to frequency dependent Pockels con-
stants, relating the hydrodynamic modes to the dielec-
tric tensor fluctuations, and unknown background spec-
tra. Due to the general nature of the approach in principle
also other mechanisms like DID are contained on a formal
level in the description, although they cannot be explicitly
treated without using a specific theory.

In our approach we concentrated on a specific mecha-
nism for the coupling of light to the motion of the linear
molecules, by assuming that the principal axis of the po-
larizability tensor agree with the principal axis of the in-
ertia tensor of the molecule. Under this assumption equa-
tions (7) and (8) are completely general. The importance
of the index of helicity m seems to be at variance with the
approach of [14], since there only m = 0 components ap-
pear. But if we express Sm22(q, t) by correlation functions
of the hydrodynamic variables plus a background spectra
with the help of the exact generalized constitutive rela-
tions as used above we obtain in the q-frame for q → 0

Sm22(z) = (ρ2m|R′NH(z)|ρ2m) (64)

+q2((ρ2m|R′NH(z)|σzz)
m

kBT
)2(j‖|R(z)|j‖)

+2q2((ρ2m|R′NH(z)|σxz)
m

kBT
)2(j⊥|R(z)|j⊥).

Here the reduced resolvent R′NH(z) = −Q
z−QLQ describes

the dynamic perpendicular to the hydrodynamic fluctua-
tions only i.e. the subscript NH indicates, that the pro-
jection operator Q, used in equation (64) projects on the
space of non hydrodynamic variables. Transforming σij to
irreducible spherical components, the IVH spectrum (8)
can be written

IVH(z) = T (z)− q2 cos2(Θ/2)a2
VH(z)(j⊥|R(z)|j⊥) (65)

where the background spectrum T (z) and the generalized
Pockels constant aVH(z) are given by

T (z) = g2 4π
15

(ρ20|R′NH(z)|ρ20)

aVH(z) = g

√
4π
15

(ρ20|R′NH(z)|σ20)
m

kBT
· (66)

In leading order in q (i.e. q ≡ 0) we are now allowed
to replace the reduced resolvent in equation (66) with the
full resolvent [14]. Similar equations can be derived for the
IVV spectrum. Equation (65) is exactly the form found in
[14]. The explicit m dependence is not present anymore
in (65), since we used that at q = 0 correlation func-
tions between fluctuations with the same l and m, which
do not contain hydrodynamic poles, do not depend on m
anymore. But it is important to note, that the dynamic
coupling to the transversal current fluctuations is not van-
ishing, only due to the existence of an irreducible m = 1
component of the stress tensor. Also in [14] this symmetry

was implicitly used. But after using it, the reduced ma-
trix element (ρ21|R′NH(z)|σ21) can be replaced by the one
for m = 0 at q = 0 in equation (64). The m dependence
is replaced by an explicit dependence on the transversal
current spectrum, which is only present due to the cou-
pling of S1

22(q, z) to the transversal current fluctuations.
We could now further proceed and express the background
spectrum and the Pockels constant with the method, ex-
plained in the Appendices A and B, by the correlation
functions and memory functions, which we used in Sec-
tions 3 and 4. But since we have to evaluate the center of
mass current correlation functions and the center of mass
density correlation function at small but finite values of q
(for example to be able to understand the renormalization
of the transversal sound waves by rotation translation cou-
pling), we would arrive at exactly the same theory, which
we already derived in the mentioned sections. The merit of
the approach of [14] is to work out the most general form
of light scattering spectra using only generalized hydro-
dynamic and generalized constitutive equations for dielec-
tric fluctuations. Thus rigorous constraints concerning the
appearance of hydrodynamic excitations in different scat-
tering geometries are formulated. For explicit considera-
tions of specific scattering mechanisms, as done in this pa-
per, one has in general to include also non hydrodynamic
variables.

6 Conclusion

In this work we developed a microscopic theory of light
scattering for linear molecules, concentrating on the di-
rect contribution to the spectra. The starting point of our
theory is an exact expression for the spectra in terms of
correlation functions (Eqs. (7) and (8)). It turns out to
be important to accurately take the tensorial character of
the orientational correlation function into account. This is
due to the fact that the orientational components of differ-
ent helicity index m transform in general differently under
rotations. It is in this context crucial, that the dynamic
correlation functions Sm22(q, ω) (contrary to the memory
functions) have to be evaluated at small but finite wave
vectors due to the following reason. The rotational symme-
try allows for the dynamic coupling of m = 0 components
of tensorial densities ρlm and rotational currents to the
longitudinal and the m = 1 components of tensorial den-
sities ρlm and rotational currents to transversal current
fluctuations, respectively. Microscopically the coupling is
non vanishing due to the induction of local stress by the ro-
tation of the molecules. Therefore the hydrodynamic poles
show up in the corresponding dynamic correlation func-
tion Sm22(q, ω). Thus we are not allowed to replace them by
there value at q = 0, where indeed correlation functions
for different values of m, but the same l, are equal. Only
the m = 2 component of Sm22(q, ω) which does not cou-
ple to any hydrodynamic mode and all memory functions,
which – due to our choice of dynamic variables – do not
contain by construction any hydrodynamic pole, can be
replaced by its value at q = 0. It is the violation of rota-
tional symmetry on the spatial scale of the light scattering
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experiments due to the existence of hydrodynamic modes,
which causes the importance of the helicity index m.

Based on a projection operator formalism, we formu-
late a microscopic theory for the correlation functions
Smll′(q, ω) of supercooled molecular liquids, which include
all possible couplings to hydrodynamic modes. Simplifying
the equations of the molecular mode coupling theory ex-
tended by transverse currents, we demonstrate explicitly,
that a qualitative description for light scattering spectra
near the glass transition can be achieved, which treats
correctly the interplay of hydrodynamic modes and struc-
tural relaxations. We further derive microscopic expres-
sions which give the influence of the rotation-translation
coupling onto the hydrodynamic poles. It is also shown
how other theories of light scattering can be expressed by
the quantities, which appear in our theory.

The equations (7) and (8) are in principle not re-
stricted to small q-values. They are therefore also valid
for the interpretation of X-ray spectra, if we give up the
restriction to small wave vectors. Since the MMCT, for-
mulated in our paper is a theory for all wave vectors, there
will be no principal problems to do this. A possible appli-
cation of the restricted theory in Section 4, would be to
compare spectra of different scattering angles and of dif-
ferent scattering geometries in order to obtain microscop-
ically relevant quantities like e.g. the rotation–translation
coupling. But to obtain reliable results, it is of course nec-
essary to give up the Maxwell ansatz and to include β
relaxation phenomena in the memory functions. Fur-
ther we like to encourage the evaluation of the orienta-
tional components for different m values from computer
simulations.

We thank R. Schilling, M. Fuchs, H.Z. Cummins and R. Pick
for a critical reading of the manuscript and for helpful com-
ments. Our work was financially supported from the SFB 262.

Appendix A: Coupling between polarizability
and shear stress

To demonstrate how theories of light-scattering, based on
various projection operator formalism can in principal be
expressed by the correlation functions appearing in molec-
ular MCT, we take as an example the set of variables from
the book of Berne and Pecora [22] and show how their
memory functions can be evaluated using the basis set of
molecular MCT.

We use the projection operator formalism in Laplace
transformed space (see e.g. [34]). To explain the appear-
ance of a Rytov Dip, in [22] the polarizability and one
component of the transverse current jx(q, z) with jx ∼
1/
√

2({jT
1 }00 + i{jT

−1}00) are chosen as a minimal basis
set. z = ω + iε is the complex frequency. We have shown
in Section 2 that the polarizability for the depolarized light

scattering is in the subspace of the l = 2 density. Therefore
we define αVH(q, z) =: ρ2 =

∑
mBmρ2m. Applying Mori-

Zwanzig projection technique with a projection operator
PBP = |ρ2) 1

(ρ2|ρ2)(ρ2|+ |jx) 1
(jx|jx)(jx| and QBP = 1−PBP,

the dynamics of the polarizability correlation function for
the depolarized light scattering results from a solution of
the following 2× 2 matrix equation:(
z − (ρ2LR′1Lρ2) −(ρ2LR′1Ljx)

−(jxLR′1Lρ2) z − (jxLR′1Ljx)

)

×
(

(ρ2ρ2)(q, z)
0

)
=
(

(ρ2ρ2)0

0

)
(A.1)

which is still exact. L is the Liouvillian and R′1 = QBP(z−
QBPLQBP)−1QBP is the reduced dynamics and (ρ2ρ2)0 is
the static correlation function. The occurrence of a dip
in the spectrum relies on the fact that the off diagonal
element (ρ2LR′1Ljx) does not vanish for small but finite
wave-vector q. It follows from momentum conservation,
that it is of order q. It is therefore possible to define an
effective coupling constant R between transversal current
fluctuations and polarizability fluctuations due to the ro-
tation of the molecule (see Ref. [22] p. 317 to have an
explicit connection between the phenomenological theory
in [22] based on an incomplete basis set for the projection
technique and our microscopic theory)

R ∼ lim
z→0+iε

lim
q→0

1
q2
|(ρ2LR′1Ljx)|2 6= 0. (A.2)

In the following we show, how this matrix element can be
expressed by the memory-functions of MMCT. In this the-
ory not only the density ρ2m, but also the corresponding
currents {jα0 }2m are used as additional variables. A cou-
pling of the form equation (A.2) can therefore not appear
since the reduced resolvent R′2 in the new set of variables
is projecting perpendicular to the currents i.e. also per-
pendicular to Lρ2 as defined above. We have shown in
detail in Section 4:

Lρ2 =
∑
m

BmLρ2m(q, z) =
∑
m

Bmq{jT
0 }2m(q, z)

+
√

2(2 + 1){jR
0 }2m(q, z)

=
∑
m

Bm
√

2(2 + 1){jR
0 }2m(q, z) +O(q)

=: j2 (A.3)

where T refers to translational currents which occur when
applying the Liouvillian on the time dependent positions
and R refers to rotational currents which appear when ap-
plying the Liouvillian to the time dependent orientations.
For small wave-vectors, we can neglect the contribution
of translational currents in the following analysis. We also
showed in Section 4, that only the m = 1 component of
the rotational current Lj2 has non-vanishing matrix ele-
ments with Ljx. Applying again Mori-Zwanzig projection
technique with the enlarged Hilbert space with

PL = |ρ2)(ρ2|+ |jx)(jx|+ |j2)(j2| (A.4)



A. Latz and M. Letz: On the theory of light scattering in molecular liquids 341

and QL = 1 − PL leaves a 3 × 3 matrix equation to be
solved. Note that due to equation (A.3) contributions that
contain QLLρ2 vanish. z −(ρ2Lj2)

z − (jxLR′2Ljx) −(jxLR′2Lj2)

−(j2Lρ2) −(j2LR′2Ljx) z − (j2LR′2Lj2)


×

 (ρ2ρ2)(q, z)
0
0

 =

 (ρ2ρ2)0

0
0

 (A.5)

here R′2 is the reduced dynamics due to the new variable
set:

R′2 = QL(z −QLLQL)−1QL. (A.6)

Making an additional projection step to obtain an effec-
tive 2× 2-matrix with |ρ2) and |jx) as variables (see Ap-
pendix B) gives a theory for the matrix elements of equa-
tion (A.1):

(ρ2LR′1Lρ2) =
|(ρ2Lj2)|2

z − (j2LR′2Lj2)

(jxLR′1Ljx) = (jxLR′2Ljx) +
|(jxLR′2Lj2)|2

z − (j2LR′2Lj2)

(jxLR′1Lρ2) =
(jxLR′2Lj2) (j2Lρ2)
z − (j2LR′2Lj2)

· (A.7)

The transformation to the complete set of variables
used in MMCT involves inversions of much larger matri-
ces, but the strategy will be the same. For q → 0 only
the matrix elements in equation (A.7) should be relevant.
equation (A.7) together with the mode coupling expres-
sions in Section 3, therefore constitute a microscopic the-
ory for the effective coupling coefficient equation (A.2) of
the theory described in [22].

Appendix B: Connection between different
projection schemes

Let us assume we have a particular basis system Ai, Bk
with (Bi|Ak) = 0 for all i, k, which spans the subspaceHL.
An example for that would be the basis set of MMCT
described in Section 3, with Ai being the densities ρlm
and Bk the currents {jαµ}lm. With such a basis set of the
Hilbert space a projection operator P̂L can be defined,
which projects into the subspaceHL. Within the subspace
HL we have a theory to calculate the matrix elements of
the memory function. In order to be able to compare dif-
ferent projection schemes using a reduced set of variables
Ai, which are elements of a subspace HA ⊂ HL we need
a formalism which expresses all matrix elements in the
subspace HA as functions of the matrix elements in the
subspace HL. This can be achieved by applying a formal-
ism described in [33].

In HL the operator (z −L)−1 is given by:

P̂L(z −L)−1P̂L =
[
P̂L(z −L)P̂L − P̂LLQ̂L

×(Q̂L(z −L)Q̂L)−1Q̂LLP̂L
]−1

=
[
P̂L(z −L)P̂L − P̂LLR̂L′LP̂L

]−1

(B.1)

where Q̂L = 1̂ − P̂L is the usual projector perpendicular
to P̂L and R̂L

′
is the reduced dynamics.

Due to the orthogonality of the variables Ai, Bk we can
decompose P̂L in P̂L = P̂A + P̂B such that Q̂L + P̂B =
1̂− P̂A. In the subspace HA we can write down a similar
equation as above:

P̂A(z − L)−1P̂A =
[
P̂A(z −L)P̂A − P̂ALR̂A′LP̂A

]−1

(B.2)

where the reduced dynamics is in the subspace HA is
given by

R̂A
′

= Q̂A
[
Q̂A(z −L)Q̂A

]−1

Q̂A. (B.3)

Let us now express R̂A
′

depending on the reduced dynam-
ics R̂L

′
. We will therefore have to do an inversion of the

operator M̂ := (Q̂A(L − z)Q̂A)

M̂ =
(
P̂B(L − z)P̂B P̂B(L − z)Q̂L

Q̂L(L − z)P̂B Q̂L(L − z)Q̂L

)
· (B.4)

The inversion of M̂ gives [33]:

M̂−1 = R̂A
′

= R̂L
′ − (P̂B − R̂L′M̂)K̂(M̂R̂L

′ − P̂B)
(B.5)

with

K̂ =
(
P̂B(−z + L)P̂B − P̂BLRL′LP̂B

)−1

. (B.6)

Therefore the connection between the two reduced dynam-
ics RA

′
and RL

′
are given by:

R̂A
′

= R̂L
′ − (P̂B − R̂L′LP̂B)K̂(P̂BLR̂L′ − P̂B). (B.7)

This connection was used in equation (A.7) to derive the
connection between the dynamics in the two different basis
sets.

Appendix C: Matrix elements
of the polarizability tensor

The polarizability of every molecule equation (2) is a ten-
sor of rank 2. It can be written as a scalar plus an ir-
reducible tensor of rank 2. In a body fixed coordinate
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�
S(t) = a

0
@ 1

1
1

1
A + 2g

r
2π

15

0
BBB@
− 1√

6
Y20(Ω(t)) + Re(Y22(Ω(t))) Im(Y22(Ω(t))) −Re(Y21(Ω(t)))

Im(Y22(Ω(t))) − 1√
6
Y20(Ω(t))− Re(Y22(Ω(t))) −Im(Y21(Ω(t)))

−Re(Y21(Ω(t))) −Im(Y21(Ω(t)))
q

2
3Y20(Ω(t))

1
CCCA (C.6)

system, with n̂i chosen along the principal axis, it has
the simple form:

αB = a

1
1

1

+
2g
3

− 1
2
− 1

2
1

 · (C.1)

The irreducible spherical components are calculated by:

αlm =
∑
i,j

∑
m1,m2

C(11l;m1m2m)Um1iUm2jα
B
ij (C.2)

where the i, j ∈ {x, y, z} are Cartesian indices and
m1,m2 ∈ {−1, 0, 1} are spherical “helicity” indices.
C(l1l2l;m1m2m) are the Clebsch Gordan coefficients. The
matrix U is given by

Umi =

 1√
2
− i√

2
0

0 0 1
− 1√

2
− i√

2
0

 · (C.3)

In the body fixed frame αB only the spherical components
αBlm with m = 0 do not vanish: αB00 = −

√
3 a and αB20 =√

2
3 g. The spherical components in the q-frame are easily

obtained by rotation.

αSlm(Ω̂i(t)) =
∑
n

Dl
nm(Ω−1

i (t))αBln = Dl
m0(Ωi(t))∗

≡
√

4π
2l+ 1

Ylm(Ωi(t)) (C.4)

where Dl
nm(Ωi(t)), Ylm(Ωi(t)) are the Wigner matrices

and spherical harmonics, respectively. We used, that the
angle Ω̂i(t) denotes the rotation carrying the body fixed
frame into coincidence with the space fixed q-frame. This
is the inverse Ω̂i(t) = Ω−1(t) to the angle describing the
orientation of the molecules with respect to the q- frame.
The Cartesian components in the q-frame are obtained by
applying the inverse transformation to (C.2)

αSij =
∑
lm

∑
m1,m2

U−1
im1

U−1
jm2

C(11l;m1m2m)αSlm. (C.5)

The final result for αS is:

see equation (C.6) above

where Im, Re denote imaginary and real part, respectively,
From the matrix element of equation (C.6) and equa-

tions (5, 6) we can calculate the contributions which are

observable in different scattering geometries. Due to the
fact that we use the q-frame as the external coordinate
system the correlation function Smm

′

ll′ are diagonal with
respect to m,m′ and Smll′(q, t) = S−mll′ (q, t). With

N

2
Sm22(q, t) =∑

i,j

〈ImY2m(Ωi(t))e−iqri(t)ImY2m(Ωj(0))eiqrj(0)〉

=
∑
i,j

〈ReY2m(Ωi(t))e−iqri(t)ReY2m(Ωj(0))eiqrj(0)〉

and

δm,0
N

2
S0

2l(q, t) =∑
i,j

〈ReY2m(Ωi(t))e−iqri(t)Yl0(Ωj(0))eiqrj(0)〉

the results (7, 8) are obtained.
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